Hybrid Memory Platform

Kenneth Wright, Sr. Director
Rambus / Emerging Solutions Division

OpenPOWER Summit 2018
MGM Grand Las Vegas
March 19, 2018

Join the Conversation #OpenPOWERSummit
Outline

• The problem / The opportunity
• Project goals
• Roadmap - Sub-projects/Tracks
 • Performance Modeling
 • Hardware Prototyping
 • Heterogeneous Memory
• Industry Collaboration / Common Goals
• Summary
Moore’s Law is slowing –but the demand for cost effective capacity increases.

Cost gap between DRAM and NAND continues to increase

Need cost-effective emerging memory to fill this gap.

Sources: IDC
Big Opportunities Expected in Memory Systems:

Attachment strategies
- OpenCAPI
- DIMM Extension
- GenZ
- CCIX

Module Buffer Architectures
- DDIMM
- NVDIMM
- LRDIMM
- RDIMM

Emerging Memories
- RRAM
- MRAM
- PCM
- Flash
Mainstream Memories vs EM

* Projected information since EM is not in commercial volume production yet

<table>
<thead>
<tr>
<th></th>
<th>DRAM</th>
<th>NAND Flash</th>
<th>PCRAM</th>
<th>RRAM</th>
<th>MRAM</th>
</tr>
</thead>
<tbody>
<tr>
<td>Latency</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>+</td>
<td></td>
</tr>
<tr>
<td>Endurance</td>
<td>++</td>
<td>--</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Write Energy</td>
<td>++</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Cost per bit</td>
<td>++</td>
<td>- → + ?</td>
<td>- → + ??</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Capacity</td>
<td>+</td>
<td>- →</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
</tbody>
</table>

- DRAM is hard to displace due to its low latency, write energy, high endurance, and relatively low cost
- DRAM will continue as a level of hierarchy in system memory
- EM offers the promise of continued cost per bit reduction
Project Goals

• **Research**: Investigate future memory subsystem architectures around flash, emerging memories and attachment strategies. Specifically:
 • Multiple Memory types in a memory subsystem managed by hardware or software (Hybrid or Heterogeneous)
 • Multiple Memory attachment types including: Direct attach on common interface, Direct attached on unique interfaces, and Serially attached
 • Manage emerging and flash based memory to reduce cost / bit while optimizing performance in both persistent and volatile memory subsystems
 • Collaborate with industry partners to develop prototype solutions and explore the path forward for hybrid memory subsystems

Emerging Memories (RRAM, MRAM, PCM) and flash have the promise of lower cost / bit and thus could continue the $/GB improvement of memory systems
Many Emerging Memories have issues with latency, bandwidth and endurance that if unmanaged can greatly affect system performance
Hybrid memory research roadmap

3 tracks to validate ideas and quantify management impact

Performance Modeling
- Results to date very promising
- Challenges: slow, limited scenarios, sim assumptions

Hardware Prototyping
- Custom Memory board and host board development
- Run real world applications
 - POWER9 CPU
 - OpenCAPI interface

Heterogeneous Memory
- Trace analysis
- Data placement
- Data movement
Memory Management Options

Hardware Managed (Hybrid Memory)
- Direct Attached Management by CPU and buffers
- Serial Attached Management by Media Controller/Buffer

Software Managed (Heterogeneous Memory)
- Prototype Research
- Simulation Research

Media Controllers and Buffers:
- DDR 4/DDR 5/LPDDR 4/Flash/RRAM/MRAM/PCM
- OpenCAPI
Hybrid Memory Simulation Results

- Performance Modeling of improved EM as main memory increase cost effective capacity
- Explored Multiple configurations for DRAM + Flash/EM
- Read performance and write performance evaluated
 - Flash device modifications identified
- Endurance is an issue as expected
 - Ongoing work on evaluating solutions

Hybrid Mem: latency

<table>
<thead>
<tr>
<th>Workload</th>
<th>DRAM</th>
<th>3DXPoint</th>
<th>No management</th>
<th>Rambus techniques</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data Caching</td>
<td>1</td>
<td>1.27</td>
<td>20.06</td>
<td>3.10</td>
</tr>
<tr>
<td>Data Serving</td>
<td>1</td>
<td>1.64</td>
<td>23.61</td>
<td>4.85</td>
</tr>
<tr>
<td>Graph Analytics</td>
<td>1</td>
<td>1.41</td>
<td>38.53</td>
<td>2.84</td>
</tr>
<tr>
<td>In-memory Analytics</td>
<td>1</td>
<td>1.5</td>
<td>24.24</td>
<td>3.54</td>
</tr>
<tr>
<td>Media Streaming</td>
<td>1</td>
<td>1.06</td>
<td>1.55</td>
<td>1.13</td>
</tr>
<tr>
<td>Web Search</td>
<td>1</td>
<td>1.23</td>
<td>6.24</td>
<td>1.96</td>
</tr>
</tbody>
</table>

Issue: Poor bandwidth, latency and endurance cause performance degradation in the absence of management

Focus: Management policies that enable improved performance at low cost per bit

"Performance Modeling of improved EM as main memory increase cost effective capacity"

"Explored Multiple configurations for DRAM + Flash/EM"

"Read performance and write performance evaluated"

"Flash device modifications identified"

"Endurance is an issue as expected"

"Ongoing work on evaluating solutions"
Hardware Platform for Hybrid Memory Research

• Processor
 ▪ IBM POWER9
 ▪ Joint work to develop memory subsystem for research on hybrid memory
 ▪ Demo planned in Q4 2018

• Memory
 ▪ Low latency access from OpenCAPI
 ▪ In conversation with several SCM providers
 ▪ Looking for collaboration on SCM parts, specifications, and controllers

• System
 ▪ Starting discussions with leading datacenter players
Hardware Platform for Hybrid Memory Research

- Low latency access from
 - OpenCAPI

- Memory Types
 - DDR4 DIMMs
 - Emerging Memory custom DIMMs
 - Enhanced Flash custom DIMMs
 - NVDIMM-P

- Management Policies: implemented in FPGA
Modularity for flexible and rapid experimentation

Processor

Applications and application interfaces

SW Management / policy

Interface

EM control

Drum control

Management HW / Policy

Interface control

Hybrid Controller

EM and DRAM Architecture
Potential Samsung Partnership

• Rambus Labs is looking for collaboration opportunities with key partners
• Including the use of Emerging Memories on the HW Platform to prove system benefit of DRAM and Emerging Memory
• Rambus is working to provide:
 • Hardware research platform access
 • Benchmarking
 • Management policies/algorithms
Common Research Goals Hybrid

<table>
<thead>
<tr>
<th>Rambus</th>
<th>Processor Leaders</th>
<th>Memory Leaders</th>
<th>System Leaders</th>
</tr>
</thead>
</table>
| • Study IS protocols (OpenCAPI)
• Study any emerging memory and hybrid
• Run real world applications
• Study Serial vs direct attach | • Programming models
• Resource sharing / partitioning / provisioning
• Interface comparisons | • Analysis of EM types
• Demo Emerging Memories
• Estimate direct attach performance
• Real world application testing | • Functional testing of IS Protocols (OpenCAPI)
• Functional testing of NVDIMM
• Designs that can be modified to be a product |
THANK YOU